
ASCII_Protocol_Manual Product
User's Manual

Firmware 6.06 and up

Last Update: May 9 2014
Visit www.zaber.com/wiki for more recent updates.

Zaber Technologies Inc.
#2 - 605 West Kent Ave. N.

Vancouver, British Columbia
Canada, V6P 6T7

http://www.zaber.com/wiki

Table of Contents
 Conventions used throughout this document..1

 Previous Versions...2

 Quick Start...3
 Connecting..3
 Talking to Zaber Devices..3
 Making it Move..4
 Changing a Device Setting..4
 Talking to an Individual Device...5

 Talking to an Individual Axis...5
 Built-in Help...5
 Quick Command Reference..6

 Quick Commands...6
 Quick Device Settings..7

 Message Format...10
 Commands..10
 Replies..11

 Warning Flags..13
 Info..14
 Alerts...15

 Command Reference...17
 estop..17
 get..17
 help..18
 home..19
 io info..19
 io get...20
 io set..21
 l...22
 move..22
 renumber...24
 set..24
 stop..25
 system reset...26
 system restore..26
 tools echo..26
 tools findrange..27
 tools gotolimit...27
 tools parking...28
 tools setcomm...29
 tools storepos..29
 trigger..30

 Condition Configuration...31
 Command Configuration..32
 Trigger Usage...33

i

Table of Contents
 Command Reference

 trigger dist...34
 trigger time..34
 warnings..35

 Device Settings..36
 accel..36
 cloop.counts..37
 cloop.mode..37
 cloop.stalltimeout..37
 cloop.steps...38
 comm.address..38
 comm.alert..38
 comm.checksum..38
 comm.protocol..39
 comm.rs232.baud..39
 comm.rs232.protocol..39
 comm.rs485.baud..40
 comm.rs485.enable...40
 comm.rs485.protocol..41
 comm.usb.protocol..41
 deviceid...41
 driver.current.hold...42
 driver.current.run..42
 driver.dir..42
 driver.temperature...42
 encoder.count..43
 encoder.dir..43
 encoder.filter...43
 encoder.index.count..43
 encoder.index.mode..43
 encoder.index.phase..44
 encoder.mode..44
 knob.dir...44
 knob.distance..45
 knob.enable...45
 knob.maxspeed..45
 knob.mode...45
 knob.speedprofile..46
 limit.approach.accel..46
 limit.approach.maxspeed..46
 limit.detect.decelonly..46
 limit.detect.maxspeed...47
 limit.swapinputs..47
 limit.sensor.action...47
 limit.sensor.edge...47
 limit.sensor.pos...48
 limit.sensor.posupdate..48

ii

Table of Contents
 Device Settings

 limit.sensor.preset...49
 limit.sensor.state...49
 limit.sensor.triggered..49
 limit.sensor.type..49
 limit.max...50
 limit.min..50
 maxspeed...50
 motion.accelonly...50
 motion.decelonly...51
 peripheralid...51
 pos...51
 resolution..51
 system.access..52
 system.axiscount...52
 system.current...52
 system.led.enable..52
 system.temperature...53
 system.voltage...53
 version...53

 Checksumming...54
 Verification...54
 Example Code...54

 C...54
 Python...55

 Appendix A - Communication Software..57
 Zaber Console...57
 PuTTY..57
 Minicom..59
 Troubleshooting..60

 Appendix B - Available Serial Ports...62
 Finding Installed Serial Ports..62

 Windows...62

iii

Conventions used throughout this document
Fixed width type indicates ASCII characters communicated to and from a device.•
The ↵ symbol indicates a carriage return, which can be achieved by pressing enter when using a
terminal program.

•

 Conventions used throughout this document 1

Previous Versions
As new features are added to the ASCII protocol, archived versions of this manual will become available
below. Please consult the correct manual for your device version.

Low Version High Version Manual
6.06 6.08 ASCII Protocol Manual 6.06 - 6.08.pdf
6.09 6.10 ASCII Protocol Manual 6.09 - 6.10.pdf

 Previous Versions 2

http://www.zaber.com/manuals/ASCII_Protocol_Manual_6.06_-_6.08.pdf
http://www.zaber.com/manuals/ASCII_Protocol_Manual_6.09_-_6.10.pdf

Quick Start

Connecting

Zaber A-Series devices support connecting to user equipment over standard serial connections using a
human-readable, text-based protocol. This allows A-Series devices to interface with a variety of equipment
and software, including:

Zaber Console•
Terminal Emulators•
User programs•
PLCs•
Automation and Instrumentation packages•

Zaber's range of A-Series devices can be up and running in a matter of minutes, no matter what environment
is being used.

A-Series devices typically communicate over RS232 at 9600 or 115200 baud, with 8 bits, 1 stop bit and no
parity, however please refer to the RS232 Communications section of the device-specific User Manual for the
correct settings. Characters are not echoed by the device, so if a terminal emulator is being used, it is
advisable to turn on local echo.

For detailed instructions on how to set up and configure various communication software, please refer to the
Communication Software section below.

Talking to Zaber Devices

Zaber devices listen for Commands sent to them over a serial port and then immediately respond with a
Reply. Commands always begin with a / and end with a new line. Some commands take parameters, which
are separated by spaces. Two example commands are:

/1 help↵
/1 move abs 10000↵

Where the move command has parameters of abs and 10000.

Replies begin with a @, have 4 or more parameters and end with a new line. For example, the most common
reply is:

@01 0 OK IDLE -- 0

Which can be broken down into:

@ A Reply
 01 The id of the device sending the reply
 0 The reply scope. 0 for the device or all axes, 1 onwards for an individual axis.
 OK The command succeeded.
 IDLE The device isn't moving, otherwise BUSY if it is moving.
 -- No faults or warnings in the device
 0 The return value, typically 0.

 Quick Start 3

http://www.zaber.com/wiki/Software/Zaber_Console

A complete description of the reply fields is available in the Replies section.

Devices can also send two other types of messages; Alerts, starting with ! and Info, starting with #. Info
messages are commonly seen in response to a help command.

Making it Move

Before a device can moved, it first needs to establish a reference to the home position. This is achieved by
sending the home command, as shown below:

/home↵
@01 0 OK BUSY WR 0

If the device isn't homed and a move command is attempted, the device will respond with a rejection reply
and the Invalid Reference (WR) flag set:

/move rel 10000↵
@01 0 RJ IDLE WR BADDATA

Once the device has been homed, you can make the device move by sending a move command. For example,
to move 10000 microsteps forward from the current position:

/move rel 10000↵
@01 0 OK BUSY -- 0

To move 10000 microsteps away from the home position, regardless of the current position:

/move abs 10000↵
@01 0 OK BUSY -- 0

Changing a Device Setting

All of the device settings are read and modified using the get and set commands. For example, to query the
device maxspeed:

/get maxspeed
@01 0 OK IDLE -- 153600

The maximum speed setting is currently 153600. The speed in microsteps/sec is calculated as data/1.6384,
which equates to 93570 microsteps/sec for the data value of 153600.

On a multi axis device, the same command would return a value for each of the axes. For example:

/get maxspeed
@01 0 OK IDLE -- 153600 153600

To set the device to move at a target speed of 50000 microsteps/sec, the speed setting would be modified as
shown below:

/set maxspeed 81920
@01 0 OK IDLE -- 0

Talking to Zaber Devices 4

On a multi axis device, the command above would set the speed for all axes. To only query or set a value for a
specific axis, see the Talking to an Individual Axis section below.

Talking to an Individual Device

Up until now all the commands that have been sent haven't included a device address. If you have more than
one device in a chain, you may have noticed that all of the devices moved at once in the Making it Move
example above and that multiple responses were received. While this is a handy feature for initial setup,
general use requires a way to instruct only an individual device to move.

Devices can be addressed by including their device number before the command. For example, the following
command instructs only device 1 to move:

/1 move abs 10000↵
@01 0 OK BUSY -- 0

The valid device addresses are from 1 - 99 inclusive and can include a leading zero for devices 1 - 9. For
example either 01 or 1 would both refer to device 1.

Talking to an Individual Axis

On multi axis devices, all the commands shown above would have affected all axes in the device. In order to
get only a single axis to move an axis number has to be provided after the device number. The following
command would instruct the first axis on a device to move to position 10000.

/1 1 move abs 10000↵
@01 1 OK BUSY -- 0

Note that this time the response scope is 1, indicating that the following information applies to axis 1.

Valid axis numbers are 0 - 9 inclusive, where 0 means all axis of the device, depending on the command or
setting.

Built-in Help

All Zaber A-Series devices feature built-in help, providing a quick and easy reference for all Commands and
Settings that the device has. Help commands require a device number to be provided. For example to access
the built-in help for device 1, send: /1 help↵.

The device will respond with a detailed description on how to access specific information about commands
and replies, as shown below:

/1 help↵
@01 0 OK IDLE WR 0
#01 0 COMMAND USAGE:
#01 0 '/stop' stop all devices
#01 0 '/1 stop' stop device number 1
#01 0 '/1 2 stop' stop device number 1 axis number 2
#01 0
#01 0 Type '/help commands' for a list of all top-level commands.
#01 0 Type '/help reply' for a quick reference on reply messages.
#01 0 Visit www.zaber.com/support for complete instruction manuals.

Changing a Device Setting 5

Note that you can view a list of all the top level commands available to device 1 by using /1 help
commands↵. To access help for a specific command, for example the move command, send:

/1 help move↵
@01 0 OK IDLE -- 0
#01 0 move abs {x} Move to absolute position
#01 0 move rel {x} Move by relative position
#01 0 move vel {x} Move at constant velocity
#01 0 move min Move to minimum position
#01 0 move max Move to maximum position

Quick Command Reference

The following table offers a quick command and setting reference for ASCII devices. For more detailed
information, refer to the Command Reference or Device Settings below.

Quick Commands

Parameters in square brackets, e.g. [clr], indicate that the parameter is optional.
Parameters in italics, e.g. value, indicate that data, typically a number, needs to be provided.
Parameters separated by a pipe, e.g. abs|rel, indicate that one of the parameters in the set need to be provided.

Command Scope Parameter(s) Returns Description
estop Axis 0 Performs an emergency stop on the axis.

get Device and
Axis setting value

Retrieves the current value of the device or
axis setting.

help Device
commands
reply
command ...

0 Displays the help information for the system.

home Axis 0 Moves the axis to the home position.

io info Device [ai|ao|do|di] ports
Returns the number of I/O channels the
device has.

io get Device ai|ao|do|di [channel] value
Returns the current value of the specified I/O
channel type.

io set Device
ao channel value
do channel value
do port value value2...

0 Sets the specified output channel to value.

l Device 0 Repeats the last command.

move Axis abs|rel|vel value 0 Moves the axis to various positions along its
travel.

move Axis min|max 0 Moves the axis to the limits of travel.

move Axis stored number 0 Moves the axis to a previously stored
position.

renumber Device value 0 Renumbers all devices in the chain.

set Device and
Axis setting value 0 Sets the device or axis setting setting to the

value.
stop Axis 0 Decelerates the axis and brings it to a halt.

system reset Device 0 Resets the device, as it would appear after
power up.

Built-in Help 6

system
restore Device 0 Restores common device settings to their

default values.

tools echo Device (message) 0 Echoes the provided message (if any) back
to the user.

tools
findrange Axis 0 Uses the home and away sensors to set the

valid range of the axis.
tools
gotolimit Axis limit dir action update 0 Moves the axis to a limit sensor and

performs the provided actions.

tools parking Device state|park|unpark 0|1
Parking allows the device to be turned off
and used at a later time without first having
to home.

tools
setcomm Device rs232baud protocol 0 Sets RS232 baud rate and communication

protocol for RS232 and USB.
tools
storepos Axis number [position|current] 0|position

Stores a number of positions for easy
movement.

trigger Device Refer to the documentation
below 0 Configures actions to be performed on the

device when a certain condition is met.

trigger dist Device
number axis displacement
number enable [count]
number disable

0 Configures a trigger to toggle a digital
output line every displacement microsteps.

trigger time Device
number period
number enable [count]
number disable

0 Configures a periodic trigger to toggle a
digital output line every period milliseconds.

warnings Axis [clear] 0
Displays the active device and axis
warnings, optionally clearing them if
applicable.

Quick Device Settings

The settings listed below can be inspected and modified with the get and set commands described above.

Setting Scope Writable Description
accel Axis Yes Sets the acceleration used to modify the speed.

cloop.counts Axis Yes The number of counts generated by the encoder for one full
revolution.

cloop.mode Axis Yes Sets the closed loop control mode.

cloop.stalltimeout Axis Yes The amount of time to wait after a stall/displacement condition,
in milliseconds.

cloop.steps Axis Yes The number of full steps required for the motor to complete one
revolution.

comm.address Device Yes The device address.
comm.alert Device Yes The device will send alert messages when this setting is 1.

comm.checksum Device Yes The device includes checksums in its messages if this setting is
set to 1.

comm.protocol Device Yes The communications protocol used by the device on the current
interface.

comm.rs232.baud Device Yes The baud rate used by RS232 Prev and Next interfaces.
comm.rs232.protocol Device Yes The protocol used by RS232 Prev and Next interfaces.

Quick Commands 7

comm.rs485.baud Device Yes The baud rate used by RS485 interface.
comm.rs485.enable Device Yes Enables the RS485 interface.
comm.rs485.protocol Device Yes The protocol used by RS485 interface.
comm.usb.protocol Device Yes The protocol used by the usb interface.
deviceid Device No The device id for the unit.

driver.current.hold Axis Yes Current used to hold the motor in position, as a percentage of
maximum.

driver.current.run Axis Yes Current used to drive the motor as percentage of maximum.
driver.dir Axis Yes Reverse the motor driver output direction.
driver.temperature Axis No The current temperature of the axis driver, in degrees Celsius.
encoder.count Axis Yes The recorded counts of the axis encoder.
encoder.dir Axis Yes Inverts the counting direction for the axis encoder.
encoder.filter Axis Yes Enable and set up digital filtering of the encoder inputs.
encoder.index.count Axis Yes The recorded counts of the axis encoder index pulse.
encoder.index.mode Axis Yes The operating mode of the axis encoder index signal.
encoder.index.phase Axis Yes The required phase for an index pulse to be counted.
encoder.mode Axis Yes The operating mode of the axis encoder.
knob.dir Axis Yes Sets the movement direction for the knob.

knob.distance Axis Yes Sets how far the device moves with each step of the knob in
displacement mode, in units of microsteps.

knob.enable Axis Yes Disable the use of the knob when set to 0.

knob.maxspeed Axis Yes The maximum speed that can be reached using the knob in
velocity mode.

knob.mode Axis Yes Sets the mode of the knob. 0 for velocity mode, 1 for
displacement mode.

knob.speedprofile Axis Yes Sets the profile to be used per increment when in velocity mode.
limit.approach.accel Axis Yes Acceleration used when approaching a limit sensor.
limit.approach.maxspeed Axis Yes Maximum speed used when approaching a limit sensor.

limit.detect.decelonly Axis Yes Deceleration used when stopping after a limit sensor has
triggered.

limit.detect.maxspeed Axis Yes Maximum speed used when moving away from a limit sensor.

limit.swapinputs Axis Yes Reverses the limit positions by swapping the home and away
sensors.

limit.home.action Axis Yes Automatic limit switch action.
limit.home.edge Axis Yes Sensor edge to align action to.
limit.home.posupdate Axis Yes Position update to occur when sensor is triggered.
limit.home.preset Axis Yes The default position of the home sensor.
limit.home.state Axis No The state of the home sensor.
limit.home.triggered Axis No Whether the home sensor has been triggered previously.
limit.home.type Axis Yes The type of home sensor connected.
limit.away.action Axis Yes Automatic limit switch action.
limit.away.edge Axis Yes Sensor edge to align action to.
limit.away.posupdate Axis Yes Position update to occur when sensor is triggered.
limit.away.preset Axis Yes The default position of the away sensor.
limit.away.state Axis No The state of the home sensor.

Quick Device Settings 8

limit.away.triggered Axis No Whether the away sensor has been triggered previously.
limit.away.type Axis Yes The type of away sensor connected.
limit.c.action Axis Yes Automatic limit switch action.
limit.c.edge Axis Yes Sensor edge to align action to.
limit.c.pos Axis Yes The updated position of the sensor, when triggered.
limit.c.posupdate Axis Yes Position update to occur when sensor is triggered.
limit.c.preset Axis Yes The default position of the c limit sensor.
limit.c.state Axis No The state of the c limit sensor.
limit.c.triggered Axis No Whether the c limit sensor has been triggered previously.
limit.c.type Axis Yes The type of c limit sensor connected.
limit.d.action Axis Yes Automatic limit switch action.
limit.d.edge Axis Yes Sensor edge to align action to.
limit.d.pos Axis Yes The updated position of the sensor, when triggered.
limit.d.posupdate Axis Yes Position update to occur when sensor is triggered.
limit.d.preset Axis Yes The default position of the d limit sensor.
limit.d.state Axis No The state of the d limit sensor.
limit.d.triggered Axis No Whether the d limit sensor has been triggered previously.
limit.d.type Axis Yes The type of d limit sensor connected.

limit.max Axis Yes The maximum position the device can move to, measured in
microsteps.

limit.min Axis Yes The minimum position the device can move to, measured in
microsteps.

maxspeed Axis Yes The maximum speed the device moves at.
motion.accelonly Axis Yes Sets the acceleration used to increase the speed.
motion.decelonly Axis Yes Sets the deceleration used when decreasing the speed.
peripheralid Axis Yes The id of the connected peripheral.
pos Axis Yes The current absolute position of the device.
resolution Axis Yes Microstep resolution
system.access Device Yes Sets the access level of the user.
system.axiscount Device No The number of axes in the device.
system.current Device No The current being drawn by the device and motors.
system.led.enable Device Yes Enables the front panel LEDs.
system.temperature Device No The current temperature of the unit, in degrees Celsius.
system.voltage Device No The voltage being applied to the device.
version Device No The firmware version of the device.

Quick Device Settings 9

Message Format
The protocol uses a command-reply model, such that:

Communication must be initiated by a user sending a device a command.•
The device always responds with one reply immediately after a command has been received.•
Unless explicitly enabled, a device will not send any message other than a reply to a command.•

The contents of the message is space delimited, with consecutive spaces being treated as a single space. There
is only one command or response per message. Sending multiple commands in a single message is not
supported.

Commands

Commands are sent from the user to one or more devices, which always and immediately respond with a
Reply. The data field in the command is case sensitive, space delimited and depends on the command being
executed. See the Command Reference for all the available commands.

A command instructs the device to perform an operation. A typical command message and associated fields
are:

/1 1 move abs 10000↵
/n a xxxx yyy yyyyy[:CC]ff

/ - Message Type
Length: 1 byte.
The message type for a command is always /.
This field, and the footer, are the only required fields, all others are optional.

n - Device Address
Length: 1+ bytes.
The address indicates which device number should perform the command. The address is optional and
if left out, or set to zero, the command is executed by all devices on the chain. Device addresses range
from 1 - 99 inclusive.
Examples of acceptable addresses are:

0, 00, 1, 01, 000001, 76, 99, 0x00, 0x01, 0x5A, 0x5a
Invalid addresses include:

100, -1, 0x65 - The addresses are out of range and while the message may be valid, no
device will respond.

a - Axis Number
Length: 1 bytes.
The axis number indicates which axis within a device should perform the command. The axis number
is optional and if left out, or set to zero, the command is executed by all axes in the device. Axis
numbers range from 0 - 9 inclusive.

xxxx... - Command
Length: Variable.
Message data containing command information. The contents are space delimited.

 Message Format 10

The Command Reference below covers the available commands.

yyy... - Command Parameters
Length: Variable.
Message data containing command parameters and data, the contents are space delimited.
Numerical values can be in decimal, or hexadecimal when prefixed with 0x.
Negative decimal values are prefixed with '-'
The Command Reference below covers the contents of the parameters field for the available
commands.

CC - Message Checksum
Length: 3 bytes.
If provided, the device will reject messages that have been corrupted during transmission.
More information and code examples are provided in the Checksumming section below.

ff - Message Footer
Length: 1 - 2 bytes.
A newline, typically achieved by pressing enter or return. For convenience, the device accepts any
ASCII combination of Carriage Return (CR, \r) and/or Line Feed (LF, \n) as a message footer.

Smallest Command

The smallest valid command is just /↵ which generates a response from all devices in the chain, as
demonstrated below:

/↵
@01 0 OK IDLE -- 0
@03 0 OK IDLE -- 0
@02 0 OK IDLE -- 0

This can be used as a quick way to check that communications and all devices are functioning as expected.

Replies

A reply is sent by the device as soon as it has received a command and determined if it should respond. A
typical response message and associated fields are:

@01 0 OK IDLE -- 0↵
@nn a fl bbbb ww x[:CC]ff

@ - Message Type
Length: 1 byte.
This field always contains @ for a reply message.

nn - Device Address
Length: 2 bytes.
This field contains the address of the device sending the reply, always formatted as two digits.

a - Axis Number
Length: 1 byte.

Commands 11

This field contains the reply scope, from 0 to 9. 0 indicates that the following fields apply to the
whole device and all axes on it, otherwise the fields apply to the specific axis indicated.

fl - Reply Flags
Length: 2 bytes.
The reply flag indicates if the message was accepted or rejected and can have the following values:

OK - The command was valid and accepted by the device.◊
RJ - The command was rejected. The data field of the message will contain one of the
following reasons:

BADDATA - The data provided in the command is incorrect or out of range.⋅
BADCOMMAND - The command or setting is incorrect or invalid.⋅
PARKED - The device cannot move because it is currently parked.⋅
DEVICEMOVING - The device cannot be parked because it is currently moving.⋅
DEVICEONLY - An axis number was specified when trying to execute a device only
command.

⋅

◊

bbbb - Device Status
Length: 4 bytes.
This field contains BUSY when the axis is moving and IDLE otherwise. All movement commands,
including stop, put the axis into the BUSY state, while they are being executed.

ww - Warning Flags
Length: 2 bytes.
Contains the highest priority warning currently active for the device or axis, or -- under normal
conditions. A full description of the flags is available in the Warning Flags Section.

xxx.. - Response Data
Length: 1+ bytes.
The response for the command executed. The contents and format of this field vary depending on the
command, but is typically 0 (zero).

CC - Message Checksum
Length: 3 bytes.
A device will append a checksum to all replies if the comm.checksum setting is configured to 1. More
information and code examples are provided in the Checksumming section below.

ff - Message Footer
Length: 2 bytes.
This field always contains a CR-LF combination (\r\n) for a reply message.

Replies on Multi axis Devices

For replies with an axis number of 0, the status and warning flags apply to the whole device. If any axis on the
device is moving, then the reply status will be busy. Similarly the warning flags show the highest warning
across all axes.

For replies with an axis number of 1 or above, the status and warning flags only apply to the axis indicated.

Replies 12

Warning Flags

A warning flag is provided in each device-to-user reply message, indicating whether any device fault or
warning is active. If more than one condition is active, it shows the one with highest precedence.

The warning flags are defined as follows, with the highest priority first:

FD - Driver Disabled.
The driver has disabled itself due to overheating.
This warning persists until the driver returns to normal operating conditions.

FS - Stalled and Stopped.
Stalling was detected and the axis has stopped itself.
This warning persists until acknowledged and cleared by the user with the warnings command.

FE - Limit Error.
The axis took too long to reach the target limit sensor.
This warning persists until acknowledged and cleared by the user with the warnings command.

WL - Unexpected Limit Trigger.
A limit sensor triggered unexpectedly. This occurs when an automatic limit sensor action is carried
out on a previously triggered sensor.
This warning persists until acknowledged and cleared by the user with the warnings command.

WV - Voltage out of range.
The supply voltage is outside the recommended operating range of the device. Damage could result to
the device if not remedied.
This warning persists until the condition is remedied.

WT - System Temperature High
The internal temperature has exceeded the recommended limit for the device.
This warning persists until the over temperature condition is remedied.

WM - Displaced when stationary.
While not in motion, the axis has been forced out of its position.
This warning persists until the axis is moved.

WR - No Reference Position.
Axis has not had a reference position established.
This warning persists until the axis position is updated via homing or any command/action that sets
position.

NC - Manual Control.
Axis is busy due to manual control via the knob.
This warning persists until a movement command is issued.

NI - Command Interrupted.
A movement operation (command or manual control) was requested while the axis was executing
another movement command. This indicates that a movement command did not complete.
This warning persists until a movement command is issued when the axis is either idle or executing a
manual control movement.

NU - Setting Update Pending.
A setting is pending to be updated.
This warning is cleared automatically, once the settings have been updated.

To see and clear all current warnings, use the warnings command.

 Warning Flags 13

Info

This message type contains extra information from the device for testing/debugging/programming purposes.
One or more info messages can follow a reply or alert message. This message type is designed to be read by
the user and to be ignored by software.

A typical info message and its fields are:

#01 0 Visit www.zaber.com/support for complete instruction manuals.↵
#nn a xxxxxxxxxxxxx...[:CC]ff

- Message Type
Length: 1 byte.
This field always contains # for an info message.

nn - Device Address
Length: 2 bytes.
This field contains the address of the device sending the reply, always formatted as two digits.

a - Axis number.
Length: 1 byte.
Always 0 for info messages.

xxx.. - Data
Length: 1+ bytes.
The data for the info message, typically human readable text.

CC - Message Checksum
Length: 3 bytes.
A device will append a checksum to all info messages if the comm.checksum setting is configured to
1. More information and code examples are provided in the Checksumming section below.

ff - Message Footer
Length: 2 bytes.
This field always contains a CR-LF combination (\r\n) for a info message.

The common occurrence of info messages is in reply to a help command, e.g.:

/1 help↵
@01 0 OK IDLE WR 0
#01 0 COMMAND USAGE:
#01 0 '/stop' stop all devices
#01 0 '/1 stop' stop device number 1
#01 0 '/1 2 stop' stop device number 1 axis number 2
#01 0
#01 0 Type '/help commands' for a list of all top-level commands.
#01 0 Type '/help reply' for a quick reference on reply messages.
#01 0 Visit www.zaber.com/support for complete instruction manuals.

 Info 14

Alerts

An alert message is sent from a device when a motion command has completed.

If it is enabled, this message can be sent at any time without being preceded by a command from the user.
This message type is used for informational purposes or time-sensitive operations.

Alerts are controlled by the comm.alert setting, which has to be 1 for the device to send status alerts.

A typical alert message and its fields are:

!01 0 IDLE --↵
!nn a ssss ww[:CC]ff

! - Message Type
Length: 1 byte.
This field always contains ! for an alert message.

nn - Device Address
Length: 2 bytes.
This field contains the address of the device sending the alert, always formatted as two digits.

a - Axis Number
Length: 1 byte.

ssss - Device status.
Length: 4 bytes.
This field contains BUSY when any axis is moving and IDLE when all axes are stopped.

ww - Warning flags.
Length: 2 bytes.
Contains the highest priority warning currently active for the device, or -- under normal conditions. A
full description of the flags is available in the Warning Flags Section.

CC - Message Checksum
Length: 3 bytes.
A device will append a checksum to all alert messages if the comm.checksum setting is configured to
1. More information and code examples are provided in the Checksumming section below.

ff - Message Footer
Length: 2 bytes.
This field always contains a CR-LF combination (\r\n) for an alert message.

Multi axis Alerts

On a multi axis device with completion alerts enabled, an alert will be generated each time an axis stops. In
the example below, axis 2 is closer to it's maximum position than axis 1 is:

/move max↵
@01 0 OK BUSY -- 0
!01 2 IDLE --

 Alerts 15

!01 1 IDLE --

The first alert is generated when axis 2 stops, but as one axis is still moving the overall status is still busy. The
second alert is generated when axis 1 stops and as none of the axes on the device are moving, the overall
status is idle.

 Alerts 16

Command Reference
The following section details all commands that are available in the ASCII protocol. For specific device
support of a command, please refer to that device's User Manual.

For commands with a device scope, specifying an axis number other than zero in the command will result in a
DEVICEONLY error, as shown below:

/1 tools parking park↵
@01 0 OK IDLE -- 0
/1 0 tools parking park↵
@01 0 OK IDLE -- 0
/1 1 tools parking park↵
@01 1 RJ IDLE -- DEVICEONLY

For commands with an axis scope, specifying an axis number of zero or not including any axis number will
both apply the command to all axes on the device. If one of the axes is unable to complete the command, a
BADDATA response will be returned and none of the axes will perform the command. For example, moving
to a position that is outside the range of one axis, but within for another axis will result in an error:

/1 get limit.max↵
@01 0 OK IDLE -- 3038763 6062362
/1 move abs 4750000↵
@01 0 RJ IDLE -- BADDATA

Parameters in square brackets, e.g. [clr], indicate that the parameter is optional. Parameters in italics, e.g.
value, indicate that data, typically a number, needs to be provided. Parameters separated by a pipe, e.g. abs|rel,
indicate that one of the parameters in the set needs to be provided.

estop

Performs an emergency stop on the axis.

Scope
Axis

Parameters
none

The device is forced to zero velocity, no control of deceleration is performed.

Example Usage:

/1 1 estop↵
@01 1 OK IDLE -- 0

get

Retrieves the current value of the device or axis setting.

 Command Reference 17

http://www.zaber.com/wiki/Main_Page

Scope
Device and Axis

Parameters
setting The name of one of the Device Settings.

See Device Settings for a detailed list or settings and what they do.

Example Usage:

Viewing the device id:

/get deviceid↵
@01 0 OK IDLE -- 20022
Device id is 20022 (A-LSQ150B)

Viewing an invalid setting:

/get cloop.mode↵
@01 0 RJ IDLE -- BADCOMMAND
cloop.mode is only valid on devices with encoders, and this device does not have one. Attempting to
read an invalid setting results in a BADCOMMAND rejection reply.

help

Displays the built-in help.

Scope
Device

Parameters
[commands|reply|warnflags|enumscommand]
commands list

Displays the help information for the system, commands and replies or a specific command as applicable. This
command will always return a successful reply and the help information will be returned in info messages.

help warnflags displays information about the warning flags that can be present in a reply.

help commands list can be used to list all supported commands and settings of the device.

As the built-in help is specific to each device, a device number is required when sending the command.
Issuing a help command without a device number will result in each device in the chain requesting that a
device number be specified, as shown below:

/help↵
@01 0 OK IDLE -- 0
#01 0 Please provide a device address for querying help

get 18

@02 0 OK IDLE -- 0
#02 0 Please provide a device address for querying help

Example Usage:

View the built-in help for the estop command

/1 help estop↵
@01 0 OK IDLE -- 0
#01 0 estop Emergency stop

Help for an invalid command returns successfully:

/1 help dlkjsfbi↵
@01 0 OK IDLE -- 0
#01 0 No help found

home

Moves the axis to the home position.

Scope
Axis

Parameters
none

The axis is moved towards the home position (closest to the motor generally) at the lesser of the
limit.approach.maxspeed and maxspeed settings. Once the home position is reached, the current position is
reset to the limit.home.preset. Additionally, limit.home.triggered is set to 1, and the No Reference Position
(WR) warning flag is cleared. This command is equivalent to tools gotolimit home neg 2 0.

Example Usage:

/home↵
@01 0 OK BUSY WR 0

NOTE: Upon power up or setting changes, this command should be issued to obtain a reference position.
Otherwise, motion commands may respond with a rejection reply or behave unexpectedly.

io info

Returns the number of I/O channels the device has.

Scope
Device

Parameters

help 19

[ao|ai|do|di]

The parameters are used to specify the channel type: ai for Analog Input, ao for Analog Output, di for Digital
Input and do for Digital Output. Channel numbers start at 1 for each type.

If the channel type is not specified, all channels will be returned in the following order: analog out, analog in,
digital out, digital in

Example Usage:

Getting the available io configuration:

/io info↵
@01 0 OK IDLE -- 0 4 4 4
Device has no analog outputs, 4 analog input channels, 4 digital outputs and 4 digital inputs.

Getting the configuration of a specific port type:

/io info ao↵
@01 0 OK IDLE -- 0
Device has no analog output capabilities

Invalid port type:

/io info as↵
@01 0 RJ IDLE -- BADCOMMAND

io get

Get the current value of the specified I/O channel type.

Scope
Device

Parameters
ao|ai|do|di [channel]

If channel isn't specified a space delimited list of all channels of the requested type are returned.

For digital channels, a value of 0 indicates that the input or output is not conducting and a value of 1 indicates
that the channel is conducting.

For analog channels, the vaule returned is a measurement of the voltage present on the input with enough
decimal places to cover the available resolution. To see the available resolution, please consult the Series
Specs Tab on the device Product Page.

Example Usage:

io info 20

http://www.zaber.com/products/

Reading an analog input:

/io get ai 2↵
@01 0 OK IDLE -- 7.5
Analog input 2 has 7.5V on it

Reading all digital outputs:

/io get do↵
@01 0 OK IDLE -- 0 0 1 0
Digital output 3 is high while the rest are low.

Invalid port type:

/io get as 0↵
@01 0 RJ IDLE -- BADCOMMAND

Invalid channel number, using the available channels from the io info command above:

/io get ai 5↵
@01 0 RJ IDLE -- BADDATA
/io get ao↵
@01 0 RJ IDLE -- BADDATA
The analog output port has no channels and can't be displayed.

io set

Sets the specified output.

Scope
Device

Parameters
do channel value
do port value value2...

Sets the specified output channel to value.

For digital channels, a value of 0 clears the output while any other value sets it.

Specifying 'port' allows setting of all digital outputs at once.

Example Usage:

Clear digital output 3:

/io set do 3 0↵
@01 0 OK IDLE -- 0

io get 21

Using the port command to set digital output 1, 3, 4 and clear output 2:

/io set do port 1 0 1 1↵
@01 0 OK IDLE -- 0

Invalid port type:

/io set ad 2 50↵
@01 0 RJ IDLE -- BADCOMMAND

Port type that's not an output or has no channels:

/io set ai 2 50↵
@01 0 RJ IDLE -- BADDATA
/io set ao 2 50↵
@01 0 RJ IDLE -- BADDATA

Invalid channel number:

/io set do 8 1↵
@01 0 RJ IDLE -- BADDATA

l

Repeats the last successfully decoded command. Note that this command is a lower case L (l), not the number
One (1) or a Pipe (|).

Scope
Device

Parameters
none

This command repeats the previous command sent to the device and replies with that command's response.

Example Usage:

/1 move rel 10000↵
@01 1 OK BUSY -- 0
/1 l↵
@01 1 OK BUSY -- 0
The device will move all axes forward 10000 microsteps due to the move command and then another
10000 due to the l command.

move

Moves the device to various positions along its travel.

Scope

io set 22

Axis
Parameters

abs|rel|vel value
min|max
stored number

value is in units of microsteps.

abs moves to the absolute position of value. Value must be in the range [limit.min,limit.max].

rel moves the axis by value microsteps, relative to the current position. Value must be in the range [limit.min
- pos, limit.max - pos].

vel moves the axis at the velocity specified by value until a limit is reached. Value must be in the range [
-resolution*16384, resolution*16384].

min moves the axis to the minimum position, as specified by limit.min.

max moves the axis to the maximum position, as specified by limit.max.

stored moves the axis to a previously stored position. number specifies the stored position number, from 1 -
16. Refer to the tools storepos command for more information.

Example Usage:

Move all axes on the device forward by 200000 microsteps:

/move rel 200000↵
@01 0 OK BUSY -- 0

No reference point:

/move rel 2000000↵
@01 0 RJ IDLE WR BADDATA
The WR flag indicates that there is no reference point and the axis has not been homed. Sending the
home command will allow the move command to succeed.

Invalid position:

/get limit.max↵
@01 0 OK IDLE -- 305381
/move abs 305888↵
@01 0 RJ IDLE -- BADDATA
A bad data rejection was received because the position specified is beyond the range of the axis.

Parked:

/move abs 10000↵
@01 0 RJ IDLE -- PARKED
Axes cannot be moved when the device is parked. Either unpark or home it.

move 23

renumber

Renumbers a device, or all devices in a chain.

Scope
Device

Parameters
[value] Valid range: 1 - 99.

The global version of this command sequentially renumbers all devices in the chain, starting with value, if
provided, or 1. The global renumber command only works on interfaces that support daisy chaining; issuing a
global renumber command over an interface that doesn't support daisy chaining will be rejected with a
BADCOMMAND. Please consult the device User Manual to determine which interfaces support daisy
chaining.

When a specific device address is sent the renumber command, the renumber command will change the
device number to value (in which case value is required).

When a device receives a renumber command, it will use the new device number for it's response.

Example Usage:

Renumbering all devices in the chain:

/renumber↵
@01 0 OK IDLE -- 0
@02 0 OK IDLE -- 0
The devices renumbered, with the device closest to the computer being at address 1, and the next
closest being at address 2.

Renumbering a specific device:

/2 renumber 4↵
@04 0 OK IDLE -- 0
Device 2 renumbered and replied on address 4.
This is equivalent to /2 set comm.address 4↵

Invalid device number:

/renumber 999↵
@01 0 RJ IDLE -- BADDATA
The requested device number was outside of the allowable range.

NOTE: The device will reply on its new address, not the address the command was sent to.

set

Sets the device setting.

 renumber 24

Scope
Device and Axis

Parameters
setting value

Sets the device setting setting to the value. See Device Settings for a detailed list or settings and what they do.

Example Usage:

Writing a device setting:

/set knob.enable 1↵
@01 0 OK IDLE -- 0
The device setting was successfully configured.

Invalid value:

/set knob.enable 7↵
@01 0 RJ IDLE -- BADDATA

Invalid setting:

/get system.voltage↵
@01 0 OK IDLE -- 0
/set system.voltage 0↵
@01 0 RJ IDLE -- BADCOMMAND
It's possible to read from some settings but not write to them.

stop

Decelerates an axis and brings it to a halt.

Scope
Axis

Parameters
none

To quickly stop an axis, see the estop command.

Example Usage:

/stop↵
@01 0 OK BUSY -- 0

set 25

system reset

Resets the device, as it would appear after power up.

Scope
Device

Parameters
none

Example Usage:

/system reset↵
@01 0 OK IDLE -- 0

system restore

Restores common device settings to their default values.

Scope
Device

Parameters
none

This command resets common settings to their default for the device and peripheral. Communications settings
are not modified.

Example Usage:

/system restore↵
@01 0 OK IDLE -- 0

tools echo

Echoes the provided message (if any) back to the user.

Scope
Device

Parameters
[message]

This command always returns a successful response, with any message provided by the user.

Example Usage:

 system reset 26

/tools echo hi there↵
@01 0 OK IDLE -- hi there

tools findrange

Uses the home and away sensors to set the valid range of the axis for the current session.

Scope
Axis

Parameters
none

This command replaces the home command on an axis equipped with both home and away limit sensors. The
axis is first homed and the current position set to limit.home.preset. If there is an away sensor present, the axis
is then moved to the away sensor. Once the away sensor is triggered, the limit.max setting is updated to the
current position for the current session.

This command is equivalent to the following set of commands issued in order:

tools gotolimit home neg 2 0 (or equivalently, home)
tools gotolimit away pos 1 1

NOTE: Upon power up or setting changes, this command should be issued to obtain a reference position and
valid range. Otherwise, motion commands may respond with a rejection reply or behave unexpectedly.

tools gotolimit

Moves the axis to a limit sensor and performs the provided actions.

Scope
Axis

Parameters
sensor direction action update

sensor specifies one of the limit switches to move to. Can be one of home, away, c or d.

direction specifies the travel direction to the sensor. Can be one of pos or neg for a positive or negative
direction of travel, respectively.

action specifies the action to perform when the sensor is triggered. This parameter shares the same values
and effects as the limit.sensor.action setting, except that it cannot be 0 (Disabled).

update how to update the sensor position setting. This parameter shares the same values and effects as the
limit.sensor.posupdate setting.

This command moves the axis in the direction specified and waits for sensor to trigger. The axis will then
align itself to the sensor edge specified by limit.sensor.edge and perform the limit switch action and position
update specified by action and update. limit.sensor.triggered is set to 1. If action is 2 (Retract and

tools echo 27

update current position), the No Reference Position (WR) warning flag is cleared.

The automatic action settings as specified in limit.sensor.action and limit.sensor.posupdate are ignored.

Example Usage

Go home and reset the current position
/tools gotolimit home neg 2 0↵
@01 0 OK BUSY -- 0
Equivalent to the home command.

Adjust the effective travel range
/tools gotolimit away pos 1 1↵
@01 0 OK BUSY -- 0
Assuming that there is already a reference established, the command above leaves the current position
as it is when the away sensor it triggered. The limit.max setting is then updated to the current position.

tools parking

Parks the device.

Scope
Device

Parameters
state|park|unpark

Parking allows the device to be turned off and then used at a later time without first having to home the axes.

The parking state can be queried with the state option, returning 1 if parked or 0 if not.

A device can be parked with the park option. Once parked, any movement commands will result in a
PARKED error, except for home, which will home the respective axis and clear the parked state.

A parked device can be restored by powering it on and issuing the unpark command.

Example Usage:

Parking:

/tools parking park↵
@01 0 OK IDLE -- 0

Unparking:

/tools parking unpark↵
@01 0 OK IDLE -- 0

tools gotolimit 28

Parking when busy:

/tools parking park↵
@01 0 RJ BUSY -- DEVICEMOVING
The device cannot be parked while it is moving.

NOTE: Parking should not be used when there is a load on the device that could cause it to slip when the
motor hold current is turned off.

tools setcomm

Sets the RS232 baud rate and communication protocol for RS232 and USB.

Scope
Device

Parameters
rs232baud protocol

rs232baud specifies the desired RS232 baud rate. This parameter shares the same values as comm.rs232.baud.

protocol specifies the desired communication protocol, which must be supported on USB and RS232. This
parameter shares the same values as comm.rs232.protocol and comm.usb.protocol.

This command sets comm.rs232.baud, comm.rs232.protocol and comm.usb.protocol.

This command sets the Setting Update Pending (NU) notification flag and replies on the current
communication settings. Once all communication channels have been quiet for 500 milliseconds, the device
switches to the new settings and clears the Setting Update Pending (NU) flag.

Example Usage:

Switching RS232 baud rate and protocol:

/tools setcomm 9600 1↵
@01 0 OK IDLE NU 0
Configures the device to communicate at 9600 baud rate and in Binary protocol.

tools storepos

Stores a number of positions for axes for ease of movement.

Scope
Axis

Parameters
number [position|current]

number is the stored position number to be set or retrieved. The valid range is 1 - 16.

tools parking 29

position is a valid axis position to move to and must be in the range of limit.min to limit.max. The position
defaults to 0 if not set.

current specifies that the specified stored position number be set to the current position, pos.

If none of the optional arguments are provided, the current value of the stored position number will be
returned.

Example Usage:

Storing a position:

/1 1 move abs 74920↵
/1 1 tools storepos 1 current↵
@01 1 OK IDLE -- 74920
Stores the current position of 74290 microsteps to position number 1 for axis 1.

Setting a position:

/1 1 tools storepos 1 150000↵
@01 1 OK IDLE -- 0
Stored position 1 has been set to a position of 150000 microsteps for axis 1.

Retrieving a stored position:

/1 1 tools storepos 1↵
@01 1 OK IDLE -- 150000
The stored position 1 has a value of 150000 for axis 1.

Moving to a stored position:

/move stored 1↵
@01 0 OK BUSY -- 0
/get pos↵
@01 0 OK IDLE -- 150000 0
All axes on the device will move to their respective stored position. In the example above, axis 2
didn't have a value set for position 1 and moved to a position of 0.

trigger

Configures actions to be performed when an event is triggered.

Scope
Device

Parameters
info
show
number enable [count]
number disable
number when condition configuration

tools storepos 30

number action act command configuration

Triggers allow certain actions to be performed when an event occurs.

The trigger info command returns four values, the number of triggers in the device, the number of
available actions per trigger, the number of time triggers and the number of distance triggers. For example:

/1 trigger info↵
@01 0 OK IDLE -- 6 2 2 2

There are 6 triggers in total, each with 2 actions that can be performed. There are 2 time triggers available and
2 distance triggers available. In this case number has a range of 1 - 6 inclusive and act has a range of 'a' - 'b'
inclusive.

The trigger show command returns the state of the device triggers. For example:

/1 trigger show↵
@01 0 OK IDLE -- e d 500 d d d

Trigger 1 is enabled, trigger 3 will fire 500 more times before disabling and the rest of the triggers are
disabled.

The enable parameter turns on the specified trigger, executing the actions whenever the trigger fires. If the
count parameter is specified, the trigger action(s) are only performed count times. NOTE: The count
parameter itself is non-volatile but the value is not updated as the triggers fire. Upon reset, the value is
restored to the configured value, allowing the device to be configured and then powered off and installed
without a PC connection. The disable parameter turns off the specified trigger.

Note that the following settings either cannot be used in trigger conditions or actions, or can be used but have
special meanings:

Setting Alternative
accel Use motion.accelonly and/or motion.decelonly.
comm.protocol Use comm.rs232.protocol, comm.rs485.protocol, or comm.usb.protocol.
driver.temperature None.
peripheralid None.
system.current None.
system.temperature Works, but measured in tenths of a °C when used in trigger conditions.
system.voltage Works, but measured in tenths of a volt when used in trigger conditions.
version None.

Condition Configuration

Valid parameters
when io ao|ai|do|di chan trigger_condition value

trigger 31

when setting trigger_condition value
when axis setting trigger_condition value

Trigger Conditions
== Equal To
<> Not Equal To
< Less Than
> Greater Than
<= Less Than or Equal To
>= Greater Than or Equal To

The when io parameter sets a trigger to fire when a io type and channel compares to a provided value. The
available channels for each io type (ai|ao|do|di) can be queried with the io info command.

The when setting parameter sets a trigger to fire when a device setting compares to a provided value.

The when axis setting parameter sets a trigger to fire when a axis setting compares to a provided
value. The axis parameter indicates the axis number that the setting applies to.

Note that for firmware versions earlier than 6.11, not-equal-to must be written as != instead of <>.

Example Usage:

Triggering when an analog input exceeds a set voltage
/1 trigger 1 when io ai 2 > 7.5
@01 0 OK IDLE -- 0
Trigger 1 will fire when analog input 2 exceeds 7.5 volts.

Triggering when an axis position exceeds a value
/1 trigger 1 when 1 pos >= 750000
@01 0 OK IDLE -- 0
Trigger 1 will fire when the position of axis 1 hits or exceeds 750000 microsteps.

Command Configuration

Valid parameters
action act none
action act io do chan toggle|value
action act axis stop|move value
action act axis setting =|+= value

The action ... none parameter removes the specified action from the trigger.

The action ... io parameter sets a io digital output channel to the specified value, or toggles it. The
available channels for each io type (ai|ao|do|di) can be queried with the io info command.

The action ... stop|move parameter stops or performs one of the move commands on the specified
axis.

Condition Configuration 32

The action ... setting parameter adjusts a setting for the specified axis. The setting can be
configured to a certain value using the = option, or incremented by a set amount using the += option.

NOTE: No range checking or validity is performed on any of the value parameters. It is up to the user to
ensure that the provided value is always valid, otherwise the trigger will fail to carry out the desired action
under certain conditions.

Example Usage:

Moving to a position
/1 trigger 1 action a 1 move rel 10000
@01 0 OK IDLE -- 0
When trigger 1 fires, axis 1 of the device will move forward 10000 microsteps as the first action.

Toggle a digital output line
/1 trigger 1 action b io do 1 toggle
@01 0 OK IDLE -- 0
When trigger 1 fires, the device will toggle the state of digital output 1 as the second action.

Trigger Usage

The following examples demonstrate how to use the various trigger commands to perform actions.

Stopping when a digital input activates

The following commands will stop axis 1 when digital input 1 activates

/1 trigger 1 when io di 1 == 1
/1 trigger 1 action a 1 stop
/1 trigger 1 action b 1 stopIf the second action is also stop, the device will perform an
emergency stop
/1 trigger 1 enable

Cycling back and forth

The following commands will cycle axis 1 between 0 and 100000 microsteps. The maximum speed is
adjusted so that forward travel is twice as fast as backwards travel.

/1 trigger 1 when 1 pos == 0
/1 trigger 1 action a 1 move abs 100000
/1 trigger 1 action b 1 maxspeed = 150000
/1 trigger 2 when 1 pos == 100000
/1 trigger 2 action a 1 move abs 0
/1 trigger 2 action b 1 maxspeed = 75000
/1 trigger 1 enable
/1 trigger 2 enable

Command Configuration 33

trigger dist

Toggles a digital output channel when the axis travels a certain number of microsteps.

Scope
Device

Parameters
number enable [count]
number disable
number axis interval

Once configured and enabled, the distance trigger will toggle a digital output channel every interval number
of microsteps. The trigger can be set up to fire a certain number of times by specifying the count parameter to
the enable command, otherwise it will fire until disabled.

The digital output channel that toggles is hard coded for each distance trigger. Trigger 1 on a device toggles
output 1, trigger 2 toggles output 2 and so on. The initial state of the channel can be set using the io set
command. The distance triggers will conflict with other commands that use the same digital outputs, resulting
in the state of the line changing arbitrarily.

Example Usage:

Set up the distance trigger 1 on axis 1 to toggle every 1000 microsteps and enable it.

/trigger dist 1 1 1000↵
@01 0 OK IDLE -- 0
/trigger dist 1 enable↵
@01 0 OK IDLE -- 0

trigger time

Toggles a digital output channel at a certain interval.

Scope
Device

Parameters
number enable [count]
number disable
number interval

Once configured and enabled, the time triggers will toggle the digital outputs every interval milliseconds.
Each trigger can be set up to fire a certain number of times by specifying the count parameter to the enable
command, otherwise they will fire until disabled.

The digital output channel is hard coded, where time trigger 1 toggles the last digital output, time trigger 2
toggles the second last output and so on. The initial state of the channel can be set using the io set command.
The time triggers will conflict with other commands that use the same digital output, resulting in the state of
the line changing arbitrarily.

 trigger dist 34

Example Usage:

Set up time trigger 1 to toggle every 250ms (2Hz output rate) for 60 seconds (60/0.25 = 240 counts) and
enable it.

/trigger time 1 250↵
@01 0 OK IDLE -- 0
/trigger time 1 enable 240↵
@01 0 OK IDLE -- 0

warnings

Displays the active warnings for the device and axes.

Scope
Axis

Parameters
[clear]

Warnings prints out a 2 digit count of active warnings and then all the active warning flags, as described in
Warning Flags above. If this is sent to all axes on a device, the active warnings across all the axes will be
displayed, otherwise only the warnings for the specified axis will be displayed.

If the optional parameter clear is given, all the clearable warnings are reset.

Example Usage:

Normal response
/1 warnings↵
@01 0 OK IDLE -- 00
No warnings are active on the device

Axis warnings
/1 2 warnings↵
@01 2 OK IDLE FS 03 FS WD WR
There are 3 warnings active on axis 2, A stall fault, a displacement warning and a invalid reference
warning.

trigger time 35

Device Settings
The following section covers all device settings that are available in the ASCII protocol, as such some of these
settings may not be available for a particular device. To see the available settings, consult the Device Settings
section of the product User Manual or the built-in help via: /1 help get↵.

All the settings listed below are used with the get and set commands to read and change their value. All
settings that can be modified require an integer value within the valid range. Some of the settings may return
dotted decimals or multiple values.

A get command on a setting that applies to an axis where a specific axis number has not been supplied will
result in a value being returned for each axis. For example, on a two axis device:

/1 get pos↵
@01 0 OK IDLE -- 10000 15000

Similarly, configuring an axis setting without specifying an axis number will result in the value being applied
to all axes on the device. For example, on a two axis device:

/1 set maxspeed 75000↵
@01 0 OK IDLE -- 0
/1 get maxspeed↵
@01 0 OK IDLE -- 75000 75000

If the specified value is outside the valid range for any axis, none of the axes will be set and a BADDATA
reply will be returned.

Settings labelled Read-Only cannot be configured and will reply with a BADCOMMAND error if the set
command is used with them. Configuring a setting with a value outside of its specified range will result in a
BADDATA reply.

For the default values of the settings please refer to the Device and Peripheral Pages for firmware 6.

accel

Determines the acceleration and deceleration used when changing speed.

Scope: Axis.
Valid Range: 0 - 32767.
Access Level: norm.

When a movement command is issued, the axis will increase and decrease its speed at a rate determined by
this setting. The actual acceleration is calculated as accel*10000/1.6384 microsteps/sec^2. A value of 0
specifies infinite acceleration.

To modify only the acceleration or deceleration see the motion.accelonly and motion.decelonly settings.
When queried, this setting returns the value of the acceleration setting, regardless of the deceleration setting.

 Device Settings 36

http://www.zaber.com/support/?tab=Device%20IDs&version=6
http://www.zaber.com/support/?tab=Peripheral%20IDs&version=6

cloop.counts

The number of encoder counts for a full revolution.

Scope: Axis.
Valid Range: 1 - 65535.
Access Level: adv.

Specifies the number of encoder counts used for the closed loop mode encoder count to motor step ratio.

This number is typically 4x the encoder lines per revolution.

cloop.mode

The closed loop control mode.

Scope: Axis.
Valid Range: 0 - 5.
Access Level: norm.

Valid settings are:

0 - Disabled.
Encoder input is ignored and the axis behaves as a open-loop device.

•

1 - Passive Mode.
Slip conditions are detected and cause the blue LED to blink, but no position correction is
made nor is a warning flag set.

•

2 - Stall Detection.
Same as passive mode but the axis will also detect and report stall conditions.
If a stall condition is detected the axis will stop after a stall timeout

•

3 - Position Correction (Default).
Axis detects, reports and recovers from slip conditions. Stall conditions are detected and
reported.

•

4 - Stall Recovery.
Same as Position Correction, however if stalling is detected, the axis will stop and resume
after a stall timeout.

•

5 - Displace Recovery
Same as Stall Recovery, however if a stationary axis is forced out of position, the axis will
restore to the original location after a timeout.

•

Closed loop mode can be enabled on devices with built-in encoder.

To use closed loop modes with a third party encoder, enable encoder.mode and configure all encoder related
settings. Set encoder.dir so that encoder.count increments in the same direction as pos. Adjust cloop.steps and
cloop.counts to reflect the correct ratio between motor full steps and encoder counts.

cloop.stalltimeout

Stall recovery time out.

 cloop.counts 37

Scope: Axis.
Valid Range: 0 - 65535.
Access Level: norm.

Specifies, in milliseconds, the amount of time to wait after a stall/displacement condition before attempting to
recover from it for closed loop modes.

cloop.steps

Steps per revolution

Scope: Axis.
Valid Range: 1 - 255.
Access Level: adv.

Specifies the number of stepper motor full steps used for the closed loop mode encoder count to motor step
ratio.

This value is typically the number of full steps required for the motor to complete one revolution.

comm.address

The device address.

Scope: Device.
Valid Range: 1 - 99.
Access Level: norm.

The device will change its address and then respond when being set, e.g.:

/01 set comm.address 5↵
@05 0 OK IDLE -- 0

comm.alert

Alert Messages.

Scope: Device.
Valid Range: 0 - 1.
Access Level: norm.

The device sends Alert messages when this setting is 1.

comm.checksum

Send message checksums.

Scope: Device.
Valid Range: 0 - 1.

cloop.stalltimeout 38

Access Level: norm.

The device includes checksums in its messages if this setting is 1.

comm.protocol

The communications protocol used by the device on the current interface.

Scope: Device.
Valid Range: Refer to the protocol setting for the current interface.
Access Level: norm.

When writing to this setting, the device raises the Setting Update Pending (NU) notification flag and replies in
the current protocol. Once all the communications interfaces are idle, the device switches to the new protocol
and clears the Setting Update Pending (NU) flag.

comm.rs232.baud

The baud rate used by RS232 Prev and Next interfaces.

Scope: Device.
Valid Range: 9600 - 115200.
Access Level: norm.

Valid Settings:

9600•
19200•
38400•
57600•
115200.•

All other serial parameters are 8 bits, 1 stop bit, No parity and no flow control.

When writing to this setting, the device raises the Setting Update Pending (NU) notification flag and replies in
the current baud rate. Once all the communications interfaces are idle, the device switches to the new baud
rate and clears the Setting Update Pending (NU) flag.

To set RS232 baud rate and protocol at the same time, use the tools setcomm command.

comm.rs232.protocol

The communications protocol used by the device on the RS232 Prev and Next interfaces.

Scope: Device.
Valid Range: See below.
Access Level: norm.

Valid settings are:

comm.checksum 39

1 - Binary Only.
Legacy T-Series binary protocol only.

•

2 - ASCII Only.
A-Series ASCII protocol only.

•

When writing to this setting, the device raises the Setting Update Pending (NU) notification flag and replies
over the current interface. Once all the communications interfaces are idle, the device switches to the protocol
on the specified interface and clears the Setting Update Pending (NU) flag.

comm.rs485.baud

The baud rate used by RS485 interface.

Scope: Device.
Valid Range: 1200 - 115200.
Access Level: advanced.

Valid Settings:

1200•
4800•
9600•
19200•
38400•
57600•
115200•

All other serial parameters are 8 bits, 1 stop bit, No parity and no flow control.

When writing to this setting, the device raises the Setting Update Pending (NU) notification flag and replies in
the current baud rate. Once all the communications interfaces are idle, the device switches to the new baud
rate and clears the Setting Update Pending (NU) flag.

comm.rs485.enable

Enables the RS485 interface.

Scope: Device.
Valid Range: 0 - 1.
Access Level: advanced.

Setting to 1 enables the RS485 interface. If a lower priority interface is currently in use the device will
respond on the current interface and then switch to the RS485 interface, disabling the lower priority interface.
For the supported interfaces and their priorities, please consult the User Manual for your device.

When writing to this setting and the current interface is a lower priority then RS485, the device raises the
Setting Update Pending (NU) notification flag and replies on the current interface. Once all the
communications interfaces are idle, the device switches to the new interface and clears the Setting Update
Pending (NU) flag.

comm.rs232.protocol 40

comm.rs485.protocol

The communications protocol used by the device on the RS485 interface.

Scope: Device.
Valid Range: See below.
Access Level: advanced.

Valid settings are:

2 - ASCII Only.
A-Series ASCII protocol only.

•

When writing to this setting, the device raises the Setting Update Pending (NU) notification flag and replies
over the current interface. Once all the communications interfaces are idle, the device switches to the protocol
on the specified interface and clears the Setting Update Pending (NU) flag.

comm.usb.protocol

The communications protocol used by the device on the USB interface.

Scope: Device.
Valid Range: See below.
Access Level: norm.

Valid settings are:

1 - Binary Only.
Legacy T-Series binary protocol only.

•

2 - ASCII Only.
A-Series ASCII protocol only.

•

When writing to this setting, the device raises the Setting Update Pending (NU) notification flag and replies
over the current interface. Once all the communications interfaces are idle, the device switches to the protocol
on the specified interface and clears the Setting Update Pending (NU) flag.

deviceid

The device id for the unit.

Scope: Device.
Valid Range: Any value defined at Zaber Support - Device IDs.
Access Level: norm, Read Only.

The id specifying the model of the Zaber device. Each device and its associated id number is listed at Zaber
Support - Device IDs.

 comm.rs485.protocol 41

http://www.zaber.com/support/?tab=Device%20IDs&version=6
http://www.zaber.com/support/?tab=Device%20IDs&version=6
http://www.zaber.com/support/?tab=Device%20IDs&version=6

driver.current.hold

Current used to hold the motor in position.

Scope: Axis.
Valid Range: 0 - 100.
Access Level: norm.

The hold current is applied when the axis is not in motion. The value of this settings is a percentage of the
maximum drive current of the axis (2.5A typically for A-Series devices).

driver.current.run

Current used to drive the motor.

Scope: Axis.
Valid Range: 0 - 100.
Access Level: norm.

The value of this setting is a percentage of the maximum drive current of the axis (2.5A typically for A-Series
devices).

driver.dir

The direction of motor driver output.

Scope: Axis.
Valid Range: 0 - 1.
Access Level: adv.

Inverts the output direction of the motor driver.

driver.temperature

The current temperature of driver, in degrees Celsius.

Scope: Axis.
Valid Range: 0 - 150.
Access Level: norm, Read-Only.

Example:

/1 1 get driver.temperature↵
@01 1 OK IDLE -- 53.5
The driver is currently at 53.5°C.

 driver.current.hold 42

encoder.count

The position as reported by the axis encoder.

Scope: Axis.
Valid Range: -214783648 - 214783647.
Access Level: norm, Read-Only; adv, Read-Write.

The encoder count, where present. Units are arbitrary and dependent on the encoder used.

encoder.dir

The direction of encoder count.

Scope: Axis.
Valid Range: 0 - 1.
Access Level: adv.

Inverts the counting direction for the axis encoder.

encoder.filter

Enable and set up digital filtering of the encoder inputs.

Scope: Axis.
Valid Range: 0, 1, 2, 4, 16, 32, 64, 128, 256.
Access Level: adv.

A value of 0 disables filtering and any other value proportionally rejects noises while reducing the maximum
speed the encoder can update at.

encoder.index.count

The recorded counts of the axis encoder index pulse.

Scope: Axis.
Valid Range: -32768 - 32767.
Access Level: norm, Read-Only; adv, Read-Write.

For encoders that support an index pulse, this setting tracks the number of index pulses received.

encoder.index.mode

Specifies the operating mode of the encoder index pulse.

Scope: Axis.
Valid Range: 0 - 1.
Access Level: adv.

 encoder.count 43

Valid settings are:

0 - Disabled.
No encoder index is present.

•

1 - Normal.
Encoder index pulses are counted.

•

encoder.index.phase

Specifies the value of the encoder phase for a valid index pulse.

Scope: Axis.
Valid Range: 0 - 1.
Access Level: adv.

When this setting is 0, the encoder index line needs to go high when both the encoder phase lines are low for
the index pulse to be counted.

When this setting is 1, the encoder index line needs to go high when both the encoder phase lines are high for
the index pulse to be counted.

encoder.mode

Specifies the operating mode of the encoder.

Scope: Axis.
Valid Range: 0 - 1.
Access Level: adv.

Valid settings are:

0 - Disabled.
No encoder is present.

•

1 - Normal.
The encoder input is enabled.

•

knob.dir

Knob movement direction.

Scope: Axis.
Valid Range: 0 - 1.
Access Level: norm.

Sets the movement direction for the knob. 0 and the device moves in a positive direction for clockwise
rotation. 1 reverses the direction.

encoder.index.mode 44

knob.distance

The distance moved via the knob.

Scope: Axis.
Valid Range: 0 - limit.max.
Access Level: norm.

Sets how far the axis moves with each step of the knob in displacement mode, in microsteps.

knob.enable

Enables the knob.

Scope: Axis.
Valid Range: 0 - 1.
Access Level: norm.

Enables the use of the knob when set to 1.

knob.maxspeed

The maximum speed that can be achieved with the knob in velocity mode..

Scope: Axis.
Valid Range: 1 - resolution*16384.
Access Level: norm.

When in velocity mode, the axis will move up to a maximum speed determined by this setting. The actual
speed is calculated as knob.maxspeed/1.6384 microsteps/sec.

knob.mode

Sets the mode of the knob.

Scope: Axis.
Valid Range: 0 - 1.
Access Level: norm.

Valid Settings:

0 - Velocity mode.
The knob controls the velocity of the axis, varying for the amount turned.
Velocity mode is defined by knob.speedprofile and knob.maxspeed setting.

•

1 - Displacement mode.
Each step of the knob moves the axis a specific distance, as indicated by the knob.distance
setting.

•

 knob.distance 45

knob.speedprofile

Velocity increment profile.

Scope: Axis.
Valid Range: 1 - 3.
Access Level: norm.

Sets the profile to be used per increment when in velocity mode. Valid settings are:

1 - Linear•
2 - Quadratic•
3 - Cubic•

limit.approach.accel

The acceleration to be used when approaching a limit sensor.

Scope: Axis.
Valid Range: 0 - 32767.
Access Level: adv.

When approaching a limit sensor, the axis will accelerate to limit.approach.maxspeed at the rate
specified. The actual acceleration is calculated as accel*10000/1.6384 microsteps/sec^2. A value of 0
specifies infinite acceleration.

limit.approach.maxspeed

The maximum speed to be used when approaching a limit sensor.

Scope: Axis.
Valid Range: 1 - resolution*16384.
Access Level: adv.

When approaching a limit sensor, the axis will travel at the lesser of limit.approach.maxspeed and maxspeed.
The actual speed is calculated as maxspeed/1.6384 microsteps/sec.

limit.detect.decelonly

The deceleration to be used when a limit sensor has been triggered.

Scope: Axis.
Valid Range: 0 - 32767.
Access Level: adv.

When a limit sensor is triggered, the axis will slow down to a stop at the rate specified. The actual
deceleration is calculated as decel*10000/1.6384 microsteps/sec^2. A value of 0 specifies infinite
acceleration.

 knob.speedprofile 46

limit.detect.maxspeed

The maximum speed to be used when moving away from a limit sensor.

Scope: Axis.
Valid Range: 1 - resolution*16384.
Access Level: adv.

When a limit sensor is triggered, the axis will move away from the sensor at the speed specified.. The actual
speed is calculated as maxspeed/1.6384 microsteps/sec.

limit.swapinputs

Reverses the home and away sensor inputs.

Scope: Axis.
Valid Range: 0 - 1.
Access Level: adv.

Setting to 1 swaps the home and away input pins.

limit.sensor.action

Automatic limit switch action.

Scope: Axis.
Valid Range: 0 - 2.
Access Level: adv.

Specifies the automatic limit sensor action to be performed when sensor becomes active during axis
movement. The sensor is one of home, away, c or d. Valid setting are:

0 - Disabled.
No action is performed when this sensor is triggered.

•

1 - Retract.
Retract to the side of the sensor specified in limit.sensor.edge.

•

2 - Retract and update current position.
In addition to above, the value of limit.sensor.preset is written to pos. The No Reference
Position (WR) warning flag is cleared.

•

Sensor is active when limit.sensor.state is 1.

If an automatic limit sensor action is triggered and limit.sensor.triggered is 1, the Unexpected Limit Trigger
(WL) warning flag is set.

limit.sensor.edge

Specifies the side of the sensor for alignment during limit actions.

 limit.detect.maxspeed 47

Scope: Axis.
Valid Range: 0 - 1.
Access Level: adv.

Specifies the side of the sensor to align with when the sensor is triggered. The sensor is one of home, away, c
or d.

A value of 0 aligns the axis with the positive side of the sensor, a value of 1 aligns with the negative side of
the sensor.

The positive and negative directions follow the orientation of the axis position.

limit.sensor.pos

The updated position of the sensor.

Scope: Axis.
Valid Range: -1000000000 - 1000000000.
Access Level: adv.

Can be updated to the current position of the sensor, depending on the setting of limit.sensor.posupdate. The
sensor is one of home, away, c or d.

The settings limit.home.pos and limit.away.pos have alternative names of limit.min and limit.max,
respectively. These two settings represent the boundary of pos and determine the valid travel range of the axis.

limit.sensor.posupdate

Specifies how to update the sensor position after an automatic limit switch action.

Scope: Axis.
Valid Range: 0 - 2.
Access Level: adv.

Specifies whether to update the sensor position setting after an automatic limit switch action. The sensor is
one of home, away, c or d. Valid setting are:

0 - Disabled.
The sensor position is not updated.

•

1 - Set to current.
The current position (pos) is written to limit.sensor.pos for this session only.

•

2 - Set to current and save.
The current position (pos) is written to limit.sensor.pos. The value of limit.sensor.pos is saved
to non-volatile memory and persists over power cycle.

•

The sensor position is updated after the automatic limit sensor action has been carried out. This setting has no
effect if automatic limit sensor action is disabled (limit.sensor.action is 0 (Disabled)).

If sensor is one of home or away, this mechanism affects the valid travel range of the axis. See limit.min and
limit.max.

limit.sensor.edge 48

limit.sensor.preset

The default position of the sensor.

Scope: Axis.
Valid Range: -1000000000 - 1000000000.
Access Level: adv.

Specifies the default position of the sensor, which can be used to update the current position, depending on the
limit.sensor.action setting. The sensor is one of home, away, c or d.

limit.sensor.state

The current state of the sensor.

Scope: Axis.
Valid Range: 0 - 1.
Access Level: adv, Read-Only.

This setting is 1 when the sensor is active, and 0 otherwise. The sensor is one of home, away, c or d.

If limit.sensor.type is 0 (Disabled), this setting is always 0.

limit.sensor.triggered

Whether the sensor has been triggered previously.

Scope: Axis.
Valid Range: 0 - 1.
Access Level: adv, Read-Only.

This setting is set to 0 at start up. The setting is set to 1 after a limit sensor command such as home, or an
automatic limit sensor action. The sensor is one of home, away, c or d.

If an automatic limit sensor action is triggered and this setting is 1, the Unexpected Limit Trigger (WL)
warning flag is set.

limit.sensor.type

The type of connected sensor.

Scope: Axis.
Valid Range: 0 - 2.
Access Level: adv.

Specifies the type of connected sensor. The sensor is one of home, away, c or d. Valid settings are:

0 - Disabled:
No sensor is connected.

•

 limit.sensor.preset 49

1 - Active Low:
When active, the sensor outputs a logic low.

•

2 - Active High:
When active, the sensor outputs a logic high.

•

limit.max

The maximum position of the device, in microsteps.

Scope: Axis.
Valid Range: -1000000000 - 1000000000.
Access Level: norm.

Use this setting to limit the range of travel to a value other than the default. This setting is an alternative name
for the limit.away.pos setting.

NOTE: Exercise caution when modifying this setting, since it is possible to set the range to a value greater
than the physical limits of the axis.

limit.min

The minimum position the device can move to, measured in microsteps.

Scope: Axis.
Valid Range: -1000000000 - 1000000000.
Access Level: norm.

The range of travel (limit.max - limit.min) is axis dependent. This setting is an alternative name for the
limit.home.pos setting.

NOTE: Exercise caution when modifying this setting, since it is possible to set the range to a value greater
than the physical limits of the axis.

maxspeed

The maximum speed the axis moves at.

Scope: Axis.
Valid Range: 1 - resolution*16384.
Access Level: norm.

When a movement command is issued, the axis will move at a speed determined by this setting. The actual
speed is calculated as speed/1.6384 microsteps/sec.

motion.accelonly

Determines the acceleration used when increasing the speed.

limit.sensor.type 50

Scope: Axis.
Valid Range: 0 - 32767.
Access Level: norm.

When a movement command is issued, the axis will accelerate up to the maximum speed at a rate determined
by this setting. The actual acceleration is calculated as accel*10000/1.6384 microsteps/sec^2. A value of 0
specifies infinite acceleration.

motion.decelonly

Sets the deceleration used when slowing down.

Scope: Axis.
Valid Range: 0 - 32767.
Access Level: norm.

When a movement command is issued, the axis will decelerate at a rate determined by this setting. The actual
deceleration is calculated as decel*10000/1.6384 microsteps/sec^2. A value of 0 specifies infinite
acceleration.

peripheralid

The ID of the Zaber peripheral connected to a controller.

Scope: Axis.
Valid Range: Any of the values listed at Zaber Support - Peripheral IDs or 0.
Access Level: norm.

All Zaber peripheral IDs are specified at Zaber Support - Peripheral IDs.

pos

The current absolute position of the axis, in microsteps.

Scope: Axis.
Valid Range: limit.min - limit.max
Access Level: norm.

NOTE: Changing the value of this setting could result in the axis attempting to drive past its physical limits.

resolution

Microstep resolution.

Scope: Axis.
Valid Range: 1 - 256.
Access Level: norm.

motion.accelonly 51

http://www.zaber.com/support/?tab=Peripheral%20IDs&version=6
http://www.zaber.com/support/?tab=Peripheral%20IDs&version=6

Defines the number of microsteps per step of the motor. A typical A-Series motorized axis has 200 steps per
revolution and a default microstep resolution of 64, therefore it takes 12800 microsteps to make one full
revolution of the motor. For the parameters for a specific device, please refer to the device specific product
page at http://www.zaber.com/products.

NOTE: When the resolution is updated, the motion.accelonly, motion.decelonly,
limit.min, limit.max, knob.maxspeed, knob.distance, and maxspeed settings are
updated according to their default values and not their current values. After changing this setting, the axis
should be homed before any movement is performed.

system.access

Specifies the access level of the user.

Scope: Device.
Valid Range: 1 - 2.
Access Level: norm

Some commands require an access level of 'advanced' as they can potentially cause damage to the device and
stage. To use those commands and setting, system.access has to be set to access level 2.

system.axiscount

Reports the number of axes in the device.

Scope: Device.
Valid Range: 1 - 2.
Access Level: norm, Read Only

This setting reports the number of axes in the queried device.

system.current

The current being drawn by the device and motors.

Scope: Device.
Valid Range: 0 - 5.
Access Level: norm, Read-Only.

system.led.enable

Enables and disables the indicator LEDs.

Scope: Device.
Valid Range: 0 - 1.
Access Level: norm.

Setting to 0 disables all front panel LEDs on the device.

resolution 52

http://www.zaber.com/products/

system.temperature

The current temperature of the unit, in degrees Celsius.

Scope: Device.
Valid Range: 0 - 150.
Access Level: norm, Read-Only.

Example:

/get system.temperature↵
@01 0 OK IDLE -- 26.8
The device is currently at 26.8°C.

system.voltage

The voltage being applied to the device.

Scope: Device.
Valid Range: 10 - 50.
Access Level: norm, Read-Only.

Example:

/get system.voltage↵
@01 0 OK IDLE -- 47.1
The device is currently receiving 47.1V from the supply.

version

The firmware version of the device.

Scope: Device.
Valid Range: 6.0 - 6.99
Access Level: norm, Read-Only.

Example usage:

/get version↵
@01 0 OK IDLE -- 6.06

 system.temperature 53

Checksumming
The Longitudinal Redundancy Check (LRC) is employed. This allows corrupted message detection but does
not provide error correction.

Devices will verify a message checksum if it appears in the message. Devices will only send checksums if the
comm.checksum variable is set to 1.

A device will verify the checksum if the 3rd last character of a command (excluding footers) is a
colon.

•

The colon is a reserved character for checksum indication and should not appear in the message data.•
The checksum is repesented as 2 hexadecimal characters, which are case insensitive.•
The checksum is calculated from the first byte after the message type. The leading /@!# of the
message is ignored.

•

If the checksum is invalid, the device will ignore the message and flash the yellow LED(s) until the next
command is received.

For example if the message is:

01 tools echo

the checksum is:

((48 + 49 + 32 + 116 + 111 + 111 + 108 + 115 + 32 + 101 + 99 + 104 + 111)
^ 0xFF) + 1 = ((1137 & 0xFF) ^ 0xFF) + 1 = 143 = 0x8F

and the final message is:

/01 tools echo:8F\r\n

Verification

To verify a message checksum the 8-bit sum of all the bytes in the message is calculated and added to the
transmitted checksum, which has been converted to an integer. The message is valid when the 8-bit result of
the sum is zero. The colon in the message is only used as a seperator and is otherwise ignored. Using the
example above:

(1137 + 0x8F) & 0xFF = 0

Example Code

The following examples show how to calculate a message checksum and verify a received message in several
languages.

C

Calculating a checksum

 Checksumming 54

http://en.wikipedia.org/wiki/Longitudinal_redundancy_check

#define CSUM_NOTPRESENT (-2)
#define CSUM_NOSPACE (-1)
#define CSUM_FAIL (0)
#define CSUM_OK (1)

int csum_message(char *message, unsigned int max_length)
{
 unsigned char c_sum = 0;
 char *p = message+1; //skip the type character

 if(strlen(message) + 6 < max_length) //is there room for the checksum?
 {
 while(*p != 0x00)
 {
 c_sum += (unsigned char)*p++; //calculate the checksum
 }
 c_sum = ~c_sum + 1; //negate

 //add the checksum to the message
 sprintf(p, ":%02X\r\n", c_sum);
 return CSUM_OK;
 }
 return CSUM_NOSPACE;
}

Verifying a received message

int csum_verify(char *message)
{
 unsigned char c_sum = 0;
 char *p = message+1; //skip the type character

 while(*p != 0x00)
 {
 c_sum += (unsigned char)*p++; //calculate the sum

 if(*p == ':') //found the checksum field, process
 {
 c_sum += strtol(++p, NULL, 16); //convert the sent checksum
 return((c_sum == 0) ? CSUM_OK : CSUM_FAIL);
 }
 }
 return CSUM_NOTPRESENT;
}

Python

Calculating a message checksum

def csum_message(msg):
 c_sum = 0
 for c in msg[1:]:
 c_sum += ord(c) #calculate the sum of the message to be transmitted
 c_sum = 256 - (c_sum & 0xFF) #take the ones compliment (negate)
 return '%s:%02X\r\n' % (msg, c_sum) #return the full message

Verifying a received message

def csum_verify(msg):

C 55

 c_sum = 0
 if msg.find(':') < 0:
 return None #return nothing if the checksum isn't present

 x_msg, x_sum = msg.split(':', 1) #seperate out the message and checksum

 for c in x_msg[1:]:
 c_sum += ord(c) #recalculate the sum of the received message
 c_sum = (c_sum + int(x_sum, 16)) & 0xFF #add in the received checksum and truncate to a 8-bit result

 return (c_sum == 0) #return true if the message passed checksum verification

Python 56

Appendix A - Communication Software

Zaber Console

Zaber Console is the recommended application for controling Zaber devices on Windows, Linux and Mac
systems.

Download the Zaber Console and install it.1.
Launch Zaber Console2.
Select the serial port and protocol from the list and click Open3.
Zaber Console will automatically find and list the devices in the chain, as shown below.4.

Using the Advanced tab, text commands can be sent to the device(s)◊

PuTTY

PuTTY, a terminal emulator, can be used to control Zaber devices in ASCII mode on Windows.

Download putty-0.62-installer.exe from
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html and install it

1.

Launch PuTTY2.
Under the Terminal category:

Set Local echo to Force on♦
Set Local line editing to Force on♦

3.

 Appendix A - Communication Software 57

http://www.zaber.com/wiki/Software/Zaber_Console#Installing_the_application
http://www.zaber.com/wiki/File:Zabercon-config-1.png
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Under the Session category
Set the connection type to Serial♦
Set the speed to 9600♦
Enter the COM port the device(s) are connected to. Typically COM1 if directly connected to
a computer, COM3 if using a USB adapter.

♦

Enter a connection description, Zaber Device Chain in this example, and click save. Next
time the connection can be opened by double-clicking on 'Zaber Device Chain' in the Saved
Sessions list.

♦

4.

Click Open. A window similar to the one shown below will appear. Send a command, in this case /,
and press enter. The device should respond as shown below.

5.

PuTTY 58

http://www.zaber.com/wiki/File:Putty-config-1.png
http://www.zaber.com/wiki/File:Putty-config-2.png

Send a test command to check the connection. In this case /help was sent and data was
received.

◊

Minicom

Minicom is the recomended application for controling Zaber devices in ASCII mode on Linux.

Install Minicom using your distributions package manager, e.g. for Debian and Ubuntu:
sudo apt-get install minicom↵

1.

Run Minicom from a terminal2.
Press Ctrl-A then O to open the options menu

Select Serial port setup
Set the serial device (A) to the correct device◊
Set the baud rate (E) to 9600◊
Disable hardware and software flow control (F, G)◊
Press Enter to go back to the configuration menu◊

♦

Select Modem and dialing
Clear out the Init and Reset strings (option A, B)◊
Press Enter to go back to the configuration menu◊

♦

3.

 Minicom 59

http://www.zaber.com/wiki/File:Putty-config-3.png
http://www.zaber.com/wiki/File:Minicom-config-1.jpg

Select Screen and keyboard
Set Local echo (Q) to Yes◊
Press Enter to go back to the configuration menu◊

♦

Save the setup as default♦
Exit♦

Type a test command, in this example /, and press enter. The device should respond as shown below.4.

Minicom can be exited by pressing Ctrl-A then X.5.

Troubleshooting

If no data is received from the device(s) check the following:•

 Troubleshooting 60

http://www.zaber.com/wiki/File:Minicom-config-2.jpg
http://www.zaber.com/wiki/File:Minicom-config-3.jpg
http://www.zaber.com/wiki/File:Minicom-config-4.jpg

The correct serial port and baud rate are being used. Refer to the device specific User Manual
for the correct settings.

♦

The devices are powered on. Each device should have a green light on the front panel.♦
The devices are connected to the computer correctly.♦

 Troubleshooting 61

http://www.zaber.com/wiki/Main_Page

Appendix B - Available Serial Ports
Finding Installed Serial Ports

Windows

Right click on Computer or My Computer and select Manage.1.

Select Device Manager from the Computer Management list2.
Expand the Ports (COM & LPT) category

In this example there is one serial port installed (COM1), which is a USB adaptor.♦

3.

Linux

Finding devices
Open a terminal and execute the following command:♦
dmesg | grep -E ttyU?S↵
The response will be similar to the following:
[2.029214] serial8250: ttyS0 at I/O 0x3f8 (irq = 4) is a
16550A
[2.432572] 00:07: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A
[2.468149] 0000:00:03.3: ttyS4 at I/O 0xec98 (irq = 17) is a
16550A
[13.514432] usb 7-2: FTDI USB Serial Device converter now
attached to ttyUSB0

♦

This shows that there are 3 serial ports available: ttyS0, ttyS4 and ttyUSB0 (a USB adaptor)♦

1.

Checking port permissions2.

 Appendix B - Available Serial Ports 62

http://www.zaber.com/wiki/File:Win-serport-1.png
http://www.zaber.com/wiki/File:Win-serport-2.png

Using the ports found above, execute the following command♦
ls -l /dev/tty{S0, S4, USB0}↵
The permissions, given below, show that a user has to be root or a member of the dialout
group to be able to access these devices
crw-rw---- 1 root dialout 4, 64 Oct 31 06:44 /dev/ttyS0
crw-rw---- 1 root dialout 4, 68 Oct 31 06:45 /dev/ttyS4
crw-rw---- 1 root dialout 188, 0 Oct 31 07:58 /dev/ttyUSB0

♦

Checking group membership
groups↵
The output will be similar to the following:
adm cdrom sudo dip plugdev users lpadmin sambashare
Notice that dialout is not in the list

♦

A user can be added to the dialout group with the following command♦
sudo adduser $USER dialout↵
Group membership will not take effect until the next logon.♦

3.

Windows 63

	Table of Contents
	 Conventions used throughout this document
	 Previous Versions
	 Quick Start
	 Connecting
	 Talking to Zaber Devices
	 Making it Move
	 Changing a Device Setting
	 Talking to an Individual Device
	 Talking to an Individual Axis

	 Built-in Help
	 Quick Command Reference
	 Quick Commands
	 Quick Device Settings

	 Message Format
	 Commands
	 Replies
	 Warning Flags

	 Info
	 Alerts

	 Command Reference
	 estop
	 get
	 help
	 home
	 io info
	 io get
	 io set
	 l
	 move
	 renumber
	 set
	 stop
	 system reset
	 system restore
	 tools echo
	 tools findrange
	 tools gotolimit
	 tools parking
	 tools setcomm
	 tools storepos
	 trigger
	 Condition Configuration
	 Command Configuration
	 Trigger Usage

	 trigger dist
	 trigger time
	 warnings

	 Device Settings
	 accel
	 cloop.counts
	 cloop.mode
	 cloop.stalltimeout
	 cloop.steps
	 comm.address
	 comm.alert
	 comm.checksum
	 comm.protocol
	 comm.rs232.baud
	 comm.rs232.protocol
	 comm.rs485.baud
	 comm.rs485.enable
	 comm.rs485.protocol
	 comm.usb.protocol
	 deviceid
	 driver.current.hold
	 driver.current.run
	 driver.dir
	 driver.temperature
	 encoder.count
	 encoder.dir
	 encoder.filter
	 encoder.index.count
	 encoder.index.mode
	 encoder.index.phase
	 encoder.mode
	 knob.dir
	 knob.distance
	 knob.enable
	 knob.maxspeed
	 knob.mode
	 knob.speedprofile
	 limit.approach.accel
	 limit.approach.maxspeed
	 limit.detect.decelonly
	 limit.detect.maxspeed
	 limit.swapinputs
	 limit.sensor.action
	 limit.sensor.edge
	 limit.sensor.pos
	 limit.sensor.posupdate
	 limit.sensor.preset
	 limit.sensor.state
	 limit.sensor.triggered
	 limit.sensor.type
	 limit.max
	 limit.min
	 maxspeed
	 motion.accelonly
	 motion.decelonly
	 peripheralid
	 pos
	 resolution
	 system.access
	 system.axiscount
	 system.current
	 system.led.enable
	 system.temperature
	 system.voltage
	 version

	 Checksumming
	 Verification
	 Example Code
	 C
	 Python

	 Appendix A - Communication Software
	 Zaber Console
	 PuTTY
	 Minicom
	 Troubleshooting

	 Appendix B - Available Serial Ports
	 Finding Installed Serial Ports
	 Windows

